Second PUC July – 2007 Question paper

MATHEMATICS

PART - A

Answer all the ten questions : 10 x 1 = 10

1. If \(3^{127} = x \pmod{10} \), find \(x \).

2. If \(A = \begin{pmatrix} 4 & 3 \\ 1 & 2 \end{pmatrix} \), \(B = \begin{pmatrix} -4 \\ 3 \end{pmatrix} \), find \(AB \).

3. In a group \((G, \ast)\), if \(a \ast x = e \forall a \in G \), find \(x \).

4. Find the value of \((j - 3k) \times (i - j + 2k)\).

5. Find the centre of the circle passing through \((0, 0)\), \((3, 0)\) and \((0, 5)\).

6. Find the vertex of parabola \((y - 2)^2 = -8x\).

7. If \(\cos^{-1} x = \sin^{-1} x = 0 \), prove that \(x = \frac{1}{\sqrt{2}} \).

8. Find amplitude of \(2\ell - 4 \).

9. If \(y = 3^{-x} \), find \(\frac{dy}{dx} \).

10. Evaluate: \(\int_0^{\pi/2} \sqrt{1 - \cos 2x} \, dx \).

PART - B

Answer any ten questions : 10 x 2 = 20
11. If \(a \equiv b \pmod{m} \) and \(n \mid m \ \forall \ n \in I \), prove that \(a \equiv b \pmod{n} \).

12. Without expansion, find the value of

\[
\begin{vmatrix}
\sin^2 x & \cos^2 x & 1 \\
\cos^2 x & \sin^2 x & 1 \\
-10 & 12 & 2
\end{vmatrix}
\]

13. If \(\mathcal{Q}^+ \) is the set of all positive rationals w.r.t. \(*\),

define \(a * b = \frac{2ab}{3} \ \forall \ a, b \in \mathcal{Q}^+ \). Find

a) Identity element.

b) Inverse of \(a \) under \(*\).

14. For any vector \(\vec{a} \), prove that

\[
\vec{a} = (\vec{a} \cdot i)i + (\vec{a} \cdot j)j + (\vec{a} \cdot k)k.
\]

15. Find the length of tangent from the centre of circle \(x^2 + y^2 - 8x = 0 \) to the circle \(3x^2 + 3y^2 = 7 \).

16. Find the centre of ellipse whose vertices are \((2, -2) \) and \((2, 4) \). Also find the length of major axes.

17. If \(\tan^{-1} x + \tan^{-1} y = \frac{\pi}{2} \), prove that \(xy = 1 \).

18. If \(x = \text{cis} \alpha \) and \(y = \text{cis} \beta \),
prove that $\sin (\alpha - \beta) = \frac{1}{2i} \left(\frac{x}{y} - \frac{y}{x} \right)$.

19. If $y \log_e x = y - x$, prove that

$$\frac{dy}{dx} = \frac{2 - \log_e x}{\left(1 - \log_e x \right)^2}.$$

20. Prove that x^x is minimum at $x = \frac{1}{e}$.

21. Evaluate:

$$\int \frac{1}{5e^{3x} + 1} \, dx.$$

22. Form a differential equation for the equation $x^2 + y^2 + 2ky = 0$.

PART - C

1. Answer any three questions: $3 \times 5 = 15$

23. a) Find the G.C.D. of 48 and 18. If $6 = 48m + 18n$, find m and n. 3

b) Solve $51x = 32 \mod 7$. Write the solution set. 2

24. If

$$\begin{bmatrix} 7 & 6 & -5 \\ 3 & -4 & 1 \\ 1 & 2 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 30 \\ 0 \\ 10 \end{bmatrix},$$

find x, y and z using Cramer's Rule. 5
25. Prove that the set \(G = \{ \ldots, 5^{-2}, 5^{-1}, 5^{0}, 5^{1}, 5^{2}, \ldots \} \) is an
Abelian group under usual multiplication.

26. a) Find the area of the triangle \(ABC \) where position vectors of \(A, B, C \) are \(i - j + 2k, \ 2j + k, \ j + 3k \) respectively.

b) Prove that

\[
\vec{a} \times (\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c} \times \vec{a}) + \vec{c} \times (\vec{a} \times \vec{b}) = \vec{0}.
\]

II. Answer any two questions: \(2 \times 5 = 10 \)

27. a) Obtain the condition for two circles

\[
x^2 + y^2 + 2g_1 x + 2f_1 y + c_1 = 0
\]

\[
x^2 + y^2 + 2g_2 x + 2f_2 y + c_2 = 0
\]

to intersect orthogonally.

b) The radical axis of two circles is \(x - 2y + 6 = 0 \). The equation of one of the circles is \(2x^2 + 2y^2 - 8x - 4y - 22 = 0 \). If the second circle passes through the point \((1, 6)\), find its equation.

28. a) Find the centre and the foci of ellipse

\[
4x^2 + 9y^2 + 16x - 18y - 11 = 0.
\]
b) Find the focal distance of any point \((x, y)\) on the parabola
\[y^2 = 4ax.\]

29. a) Prove that
\[
\tan \left(\frac{1}{2} \sin^{-1} \left(\frac{2x}{1 + x^2} \right) + \frac{1}{2} \cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right) \right) = \frac{2x}{1 - x^2}.
\]

b) Find the general solution of
\[\tan m\theta = \tan n\theta.\]

III. Answer any three of the following questions:

30. a) Differentiate \(\cosec 4x\) with respect to \(x\) from first principles.

b) If \(y = \tan^{-1} \left(\frac{2 + 5 \tan x}{5 - 2 \tan x} \right)\), find \(\frac{dy}{dx}\).

31. a) If \(y = \left[x + \sqrt{1 + x^2} \right]^m\), prove that
\[
\left(1 + x^2\right) \frac{d^2y}{dx^2} + x \frac{dy}{dx} - m^2 y = 0.
\]

b) Find a point on the curve \(y = x^3 - 3x\), where tangent is parallel to the line joining the points \((1, -2)\) and \((2, -5)\).
32. a) A circular blot of ink in a blotting paper increases in area in such a way that the radius \(r \) cm at time \(t \) seconds is given by
\[r = 2t^2 - \frac{t^3}{4}. \]
Find the rate of increase of area when \(t = 2 \).

b) Prove that \[\int uv' \, dx = uv - \int vu' \, dx \]
where \(u' = \frac{du}{dx} \) and \(v' = \frac{dv}{dx} \).

33. a) Evaluate:
\[\int \frac{x \sin^{-1} x}{\sqrt{1 - x^2}} \, dx \]

b) Evaluate:
\[\int \frac{1}{\sqrt{1 - 4x - 4x^2}} \, dx \]

34. Find the area enclosed between the parabolas \(y^2 = 4ax \) and \(x^2 = 4ay \).

PART - D

Answer any two of the following questions:

35. a) Define director circle of a hyperbola. Derive the equation of director circle of the hyperbola.

b) Using \(A(x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix} \)
find \(\text{adj} \left[A(x) \right] \). Prove that \(\text{adj} \left[A(x) \right] = A(-x) \).

36. a) Find the fourth roots of \((\sqrt{3} - i)^3 \). Also find their continued product.

b) Prove by vector method,
\[
\sin(\alpha + \beta) = \sin\alpha \cos\beta + \cos\alpha \sin\beta.
\]

37. a) Show that the height of a right circular cylinder of the greatest volume which is inscribed in a sphere of radius \(a \) is \(\frac{2a}{\sqrt{3}} \). Find the radius of the right circular cylinder.

b) Find the general solution of
\[
\sec x - \tan x + \sqrt{3} = 0
\]

38. a) Prove that
\[
\int_{0}^{\pi} \frac{x \, dx}{a^2 \cos^2 x + b^2 \sin^2 x} = \frac{\pi^2}{2ab}
\]

b) Solve the differential equation
\[
\frac{dy}{dx} = \tan^2 (x + y)
\]